
FoxInCloud
What are adaptations for?
Filling the gap between a VFP app running on
Desktop –vs– FoxInCloud Web Application Server.
AT20 Development Workshop – Day 1, Activity 2

Agenda

Section Subject Duration

1 A different process flow 15’

2 Access to user’s peripherals 3’

3 State factors 3’

4 Where user event are processed 3’

5 dodefault() 3’

Desktop: one execution
thread / stack per user

Any question? Post with screenshot in the ‘FoxInCloud’ section of https://support.west-wind.com/ or http://www.universalthread.com/

1- User event code runs in
the same call stack as the
initial application startup.

2- When user closes a
form, it releases
completely from memory
and these events fire:
form.unload(), form and
members .destroy()

3- Variables assigned at
app startup without LOCAL
are ‘seen’ by all called
procedures and methods

Web:
Request – Response

Any question? Post with screenshot in the ‘FoxInCloud’ section of https://support.west-wind.com/ or http://www.universalthread.com/

For each
request,
Server must
deliver a
response

Server
can’t stay
waiting for
requests
from a
single user.

End user on Web browser

Form
startup

FIC App.
Server (FAS)

Startup Form
Event

wait wait

Requires form

Form HTML

Event - eg. click

Form updates

Web:
User events run in server context

Any question? Post with screenshot in the ‘FoxInCloud’ section of https://support.west-wind.com/ or http://www.universalthread.com/

Each user
request
runs
“Stateless”,

IOW,
out of the
context of
startup and
previous
user action.

Adaptations
¡  Private variables must either:
¡  Become global: PUBLIC, _Screen.Property or

_VFP.Property,
¡  Be passed to form as parameters (up to 20

supported).

¡ Minimum dependencies between forms:
¡  Private datasession preferred
¡  Restore Settings
¡  Avoid mutual references

¡ Callback (…)

¡ App Startup & Exit (…)

Any question? Post with screenshot in the ‘FoxInCloud’ section of https://support.west-wind.com/ or http://www.universalthread.com/

Adaptations (…)
Callback

Any question? Post with screenshot in the ‘FoxInCloud’ section of https://support.west-wind.com/ or http://www.universalthread.com/

In Web
mode,
calling form
and modal
child form
run in
different
threads;

Server
can’t wait
(suspend)
until user
replies.

Desktop: 1 method Web: 2 methods

Adaptations (…)
App Startup & Exit

Any question? Post with screenshot in the ‘FoxInCloud’ section of https://support.west-wind.com/ or http://www.universalthread.com/

Because of
differences
in process
flow, app
startup
program
should run
differently
in desktop
and web
mode

Desktop Web

* set up app environment OK

do form login
read events

KO
•  displaying a form out of a user context

makes no sense
•  can’t enter a modal state

* clean up app environment KO – no prior modal wait state: this code won’t
execute

Recommended: move app environment set up code into a
standard env. class (xxxSets as awSets of awPublic.prg) that
cleans up environment automatically

Desktop: main.prg Web: xxxServer.prg

o = NewObject('xxxSets’, 'xxxSets.prg')
do form login
read events

cAppSetsLib = 'xxxSets.prg'
cAppSets = 'xxxSets'
lAppSetsClass = .T.

Form Form Form Form

Stateless and Scalable:
N Users <−> N Servers

User 1

Any question? Post with screenshot in the ‘FoxInCloud’ section of https://support.west-wind.com/ or http://www.universalthread.com/

Any user
can hit any
server at
any time.

Each server
(FAS) uses a
single
instance of
each form
for any user.

FAS saves/
restore the
state of form
for each
user.

User 2 User 3 User N …

FAS 1 FAS 2 FAS 3 FAS N …

Form instances stay alive until
server stops

Any question? Post with screenshot in the ‘FoxInCloud’ section of https://support.west-wind.com/ or http://www.universalthread.com/

Because
each server
keeps an
instance of
each
requested
form, some
events fire
slightly
differently.

User Desktop Web Adaptation

opens a
form

.Load()

.Init()
.Load(): once at
first user request

.Init():
•  Once at first

request with
.wlInitFirst

•  Once per user

Move user-
dependent
code
from .Load()
to .Init()

Move code
within .Init()

exits a
form

.Release()

.Destroy()

.Unload()

.Release() only Move user-
dependent
code
to .Release()

Commands acting on user’s
peripherals
do form / form.show() / report form
MessageBox() / InputBox() / WAIT
LocFile / PutFile / GetFile / GetDir / GetColor()
Menu commands

To be replaced by procedures and methods
supporting either desktop or web:

Any question? Post with screenshot in the ‘FoxInCloud’ section of https://support.west-wind.com/ or http://www.universalthread.com/

These
commands
require
access to
the user’s
peripherals,
which web
server can’t
access.

Original Adapted

do form/form.show() [.]wForm*()

report form PDF generation

MessageBox() [.]wMessageBox()

WAIT wWait()

PutFile() .wFileSaveAs()

Menu commands wMenu()

Adaptation:
Tell FoxInCloud the state factors
.wcPropSave

¡  Each object inherits a ‘wcPropSave’ property
holding a list of properties that user action can
change (mostly automated)

.wContentDynamic

¡  Tells FoxInCloud that the members of a form/
container/page can change at runtime

.wViewParmSet()

¡  Tells FoxInCloud the name and value of
parameters when querying the views

Any question? Post with screenshot in the ‘FoxInCloud’ section of https://support.west-wind.com/ or http://www.universalthread.com/

To avoid
saving
properties
that never
change,
FoxInCloud
needs to
know
elements
that user
can
change at
runtime.

Events: process on server,
browser, both, or ignore
¡  Any user event method must begin with this code :
if thisForm.wlHTMLgen
 return <some value>
endif

where <some value> tells FoxInCloud how to process
the Event:
¡  .T.: use existing VFP code on server;
¡  ‘string’: JavaScript to be executed in browser; eg.

MouseMove();
¡  thisForm.wcScriptEventClientServer() : first

execute on browser, then on server;
¡  .F.: ignore event in web mode.

 Any question? Post with screenshot in the ‘FoxInCloud’ section of https://support.west-wind.com/ or http://www.universalthread.com/

In most
cases,
events are
processed
on server
using the
existing
event code.

You can
also
implement
this process
on the client
browser
using
JavaScript.

Add dodefault() to your code
¡  .Init(), .Destroy()

¡  .Load(), .UnLoad()

¡  .Release()

¡  .AddObject(), .NewObject(), .RemoveObject()

¡  .Requery()

¡  .SetFocus()

¡  .*_assign()

¡  .Autofit()

Look at the code inherited from aw.vcx!aw* to know where
to add dodefault() in your code.

Any question? Post with screenshot in the ‘FoxInCloud’ section of https://support.west-wind.com/ or http://www.universalthread.com/

Make sure
to let
FoxInCloud
code run
by calling
dodefault()
where
appropriat
e

(soon
automated by
FAA)

That’s about it
This presentation has covered the main
differences between desktop and web
modes, requiring developer’s understanding
and attention.

FAA provides an educated, in-depth list of all
adaptations you need to care about.

Once your application is adapted and you’ve
practiced the adaptation process for a while,
you’ll naturally develop ‘the FoxInCloud way’.

Any question? Post with screenshot in the ‘FoxInCloud’ section of https://support.west-wind.com/ or http://www.universalthread.com/

One last word about FAA
FoxInCloud Adaptation Assistant

¡  Free: http://foxincloud.com/download.php

¡ Copy (test) mode / Source mode

¡ Assistant, not magician!

¡ Adapts 99% of your code (avg)

¡  Spots adaptation needing your attention

¡  Provides guidance, documentation and code
samples, together with FoxInCloud Live Tutorial:
http://foxincloud.com/tutotest/

¡  Helps you manage your adaptation project.

Any question? Post with screenshot in the ‘FoxInCloud’ section of https://support.west-wind.com/ or http://www.universalthread.com/

