

www.foxincloud.com

IMPLEMENTING FORM
CALLS AND CALLBACKS

How-To Guide

IMPLEMENTING FORM CALLS AND CALLBACKS

www.foxincloud.com ı contact@foxincloud.com

Abaque ı SARL au capital de 41 200 € ı RCS Paris B 379 373 566 ı 66, rue Michel Ange
75016 Paris +33 (0)9 53 41 90 90 ı www.zenbuyer.com ı info@zenbuyer.com

2

BEHIND THE SCENE
Form instantiation and modal responses are key issues in adapting an
application to FoxInCloud.

The purpose of this document is to explain the underlying logic of this process
and present practical advice and examples on how developers should adapt
their forms and form calls to FoxInCloud.

FoxInCloud handles form instances for you

As a standard behavior, FoxInCloud holds a single instance of each form to
serve any request of any user, and produces HTML, CSS and javascript code to
ensure a Web mode behavior similar to LAN operations.

To achieve this, FoxInCloud Application Server needs to get a grasp on the
form, in other words keep an internal reference to each form instance.

Wherever your code instantiates a form, either by DO FORM or
CreateObject(‘myFormClass’), it should be replaced by a call to the
standard wForm() method that every form inherits from their aw.vcx!awFrm
ancestor class after FoxInCloud Adaptation Assistant’s step # 2-Adapt.

We’ll explain later in this document what parameters wForm() expects, how
FoxInCloud server instantiates the form, runs its Init() method and
maintains a reference to it.

What’s special about modal states

When running an application in LAN mode, each instance of the application
serves a single user;
whenever application expects a decision from user, it simply can stop and wait
until user has made his mind, then resume execution.

IMPLEMENTING FORM CALLS AND CALLBACKS

www.foxincloud.com ı contact@foxincloud.com

Abaque ı SARL au capital de 41 200 € ı RCS Paris B 379 373 566 ı 66, rue Michel Ange
75016 Paris +33 (0)9 53 41 90 90 ı www.zenbuyer.com ı info@zenbuyer.com

3

Behind the scene…
In web mode such a process can’t happen just because application server is
not dedicated to a single user, but serves requests from any user, just like a
waiter in a bar serves all clients whereas a home maid serves a single person.

Another valid metaphor is a phone conversation: imagine you’re on the phone
and ask your correspondent a question; if you’re doing this single task, you can
wait until he or she answers; but if you have another task on hand, you will
probably ask him/her to call back when he/she has the answer.

The same concept applies to modal response with a FoxInCloud server: when
calling a modal form from which your application expects an answer, your code
will indicate to the called form the name and/or address of the method it
should ‘callback’ when user has made his decision.

In FoxInCloud, each visual object has a set of standard methods dedicated to
this purpose, named .wFormCallBack?()1. These methods accept a single
parameter where FoxInCloud can feed the value chosen by user, whatever the
type of this value: string, boolean, number, date, object, etc.

Of course, this construct does not affect the way application operates in LAN
mode: execution is suspended as usual.

What about modal responses from a form class?

In Visual FoxPro, getting a modal response from a form class (as opposed to
DO FORM myForm.scx … TO) is tricky because the show() method does not
return the value RETURNed by the unload() method.

1 This name is by pure convention; developer may use any method as long as it accepts one
parameter where FoxInCloud can inject user’s choice.

IMPLEMENTING FORM CALLS AND CALLBACKS

www.foxincloud.com ı contact@foxincloud.com

Abaque ı SARL au capital de 41 200 € ı RCS Paris B 379 373 566 ı 66, rue Michel Ange
75016 Paris +33 (0)9 53 41 90 90 ı www.zenbuyer.com ı info@zenbuyer.com

4

Behind the scene…
Usually, when instantiating a modal form class, developer codes:

PRIVATE puResponse

puResponse = <some Void Value>

o = createObject(‘formClass’, parm1, parm2, …)

o.show(1)

<code processing puResponse>

in some event method of the called form:

thisForm.PropertyHoldingUserChoice = <whatever value user chooses>

finally, in unload() method:

puResponse = thisForm.PropertyHoldingUserChoice

RETURN

The good news is … FoxInCloud handles this tedious process for you!

You just need to set, in the called form, the .wcModalChoiceProp property to
the name of the form’s property holding user’s choice; that would be
‘PropertyHoldingUserChoice’ in the preceding example.

You can also store user’s choice into the standard .wuValue property
inherited from FoxInCloud’s <VFP9>\Tools\ab\aw.vcx!awFrm.

Processing response from modal form

As mentioned earlier, in Web mode, program execution continues after form
call; so, if code was kept the same, the instructions processing user’s
response, usually located right after modal form call, would get executed.

To avoid that, you need to move this code to the ‘callback’ method indicated
when calling the form. We’ll see examples of that later in this document.

IMPLEMENTING FORM CALLS AND CALLBACKS

www.foxincloud.com ı contact@foxincloud.com

Abaque ı SARL au capital de 41 200 € ı RCS Paris B 379 373 566 ı 66, rue Michel Ange
75016 Paris +33 (0)9 53 41 90 90 ı www.zenbuyer.com ı info@zenbuyer.com

5

Behind the scene…

How is the form instantiated?

FoxInCloud instantiates your form without parameters, then executes the
form’s Init() method with the parameters passed.

If form is already instantiated when another user requires it, FoxInCloud just
re-executes the form’s Init() method with the parameters passed, after
adjusting form’s dataSessionID if it works in default DataSession

This implies that your forms are able to instantiate without any parameter
passed to their Init() method, in other word, no Error or RETURN .F.
should occur under such circumstances.

If ever some controls in your form are bound to an alias produced by calling
form (say ‘parentAlias’), a recommended practice is to code in the form’s
load() method:

IF NOT Used(‘parentAlias’)

 CREATE CURSOR parentAlias … && parentAlias is a Cursor

&& Or

 USE parentAlias NODATA NOREQUERY && parentAlias is a View

&& Or

 USE parentAlias AGAIN SHARED && parentAlias is a Table

ENDIF

IMPLEMENTING FORM CALLS AND CALLBACKS

www.foxincloud.com ı contact@foxincloud.com

Abaque ı SARL au capital de 41 200 € ı RCS Paris B 379 373 566 ı 66, rue Michel Ange
75016 Paris +33 (0)9 53 41 90 90 ı www.zenbuyer.com ı info@zenbuyer.com

6

CALLING A TOP-LEVEL FORM
In a desktop application, top-level forms are usually called from a menu or
some kind of _Screen form. No change is required in the way you call top-level
forms in your LAN application, with code such as:

DO FORM myForm.scx [WITH parm1, parm2, …] [TO userResponse]

 or

loForm = CreateObject(‘myFormClass’ [, parm1, parm2, …])

loForm.show()

In web mode though, your top-level forms should take place in a HTML page
displayed in the browser.

FoxInCloud supports 2 ways of building such HTML pages including the HTML,
CSS and JavaScript produced by FoxInCloud from your application forms:

Through ‘traditional’ method such as ASP, PHP…

You add the HTML, CSS and JavaScript produced by FoxInCloud from your
form to the page by some ‘server-side include’ directive, such as, in
ASP: <!-- #INCLUDE FILE="myForm.htm" -->.

The drawback of this method is that top-level forms need be instantiated at
server startup in order to have HTML CSS and JS available, thus their
Init() method runs without parameter.

You can instruct FoxInCloud server to instantiate forms at server start-up by
setting the ‘uFormsLaunchAtStartup’ property in you server sub-class:

* ===

DEFINE CLASS myServer AS awServer OF awServer.prg && FiC server class

…

uFormsLaunchAtStartup = 'myForm.scx'

…

ENDDEFINE && class myServer

* ===

IMPLEMENTING FORM CALLS AND CALLBACKS

www.foxincloud.com ı contact@foxincloud.com

Abaque ı SARL au capital de 41 200 € ı RCS Paris B 379 373 566 ı 66, rue Michel Ange
75016 Paris +33 (0)9 53 41 90 90 ı www.zenbuyer.com ı info@zenbuyer.com

7

Calling a top-level form…

With FoxInCloud/wConnect ‘Process’ class/object.

If you’re not familiar with the West-Wind wConnect framework, you just
need to know that the ‘Process’ class2 is where HTTP requests are
processed with VFP code.

Based on the URL component to method name mapping scheme described
in the wConnect documentation (http://www.west-
wind.com/webconnection/docs/), each request on the wConnect server
results in executing a given method of the corresponding Process object.

To build a HTML page including your form’s HTML, CSS and JS, you just
need to create methods in your awProcess sub-class named like your
forms; for instance, if your form is named ‘myForm’, you can create a
method called ‘myForm’ in your awProcess sub-class.

FoxInCloud’s awProcess class includes a convenient standard method
wFormStandardPage()doing all the work for you:

PROCEDURE myForm

this.wFormStandardPage(‘myForm.scx’ [, parm1[, parm2...[, parmN]]])

awProcess::wFormStandardPage():

1. Instantiates ‘myForm.scx’ if not already,

2. Executes myForm.scx::Init() with the parameters provided,

3. Generates HTML, CSS and JavaScript from your VFP live form,

4. Builds a complete page including your form’s HTML, CSS and JS,

5. Sends back the page as a response to the client browser.

2 Process class is named ‘wwProcess’ in wConnect, ‘awProcess’ is FoxInCloud’s sub-class of

‘wwProcess’.

IMPLEMENTING FORM CALLS AND CALLBACKS

www.foxincloud.com ı contact@foxincloud.com

Abaque ı SARL au capital de 41 200 € ı RCS Paris B 379 373 566 ı 66, rue Michel Ange
75016 Paris +33 (0)9 53 41 90 90 ı www.zenbuyer.com ı info@zenbuyer.com

8

Calling a top-level form…
With this method you could create a sub-class of awProcess like:

DEFINE CLASS myProcess AS awProcess OF awServer.prg

*-------------------------

PROCEDURE identification

this.wFormStandardPage('identification.scx', ‘someParm’)

EXTERNAL FORM identification.scx && instructs project manager to add form

*-------------------------

PROCEDURE orderEntry

this.wFormStandardPage('orderEntry.scx', 0)

EXTERNAL FORM orderEntry.scx && instructs project manager to add form

*-------------------------

* etc.

ENDDEFINE && CLASS myProcess

This method is preferable as it speeds up Server startup (no form to
instantiate) and allows passing parameters to your Top Level Forms.

Figure 1 - Sample page built with awProcess::wFormStandardPage()

IMPLEMENTING FORM CALLS AND CALLBACKS

www.foxincloud.com ı contact@foxincloud.com

Abaque ı SARL au capital de 41 200 € ı RCS Paris B 379 373 566 ı 66, rue Michel Ange
75016 Paris +33 (0)9 53 41 90 90 ı www.zenbuyer.com ı info@zenbuyer.com

9

CALLING A CHILD FORM
As instructed by Adaptation Assistant, calling a child form with FoxInCloud
requires you replace your child form call instruction such as …

DO FORM myForm.scx [WITH parm1, parm2, …] [TO userResponse]

 or

loForm = CreateObject(‘myFormClass’ [, parm1, parm2, …])

loForm.show()

… by a call to the standard thisForm.wForm() method that every form
inherits from the <VFP9>\Tools\ab\aw.vcx!awFrm ancestor class after the
‘automated adaptation’ (FoxInCloud Adaptation Assistant step #2):

thisForm.wForm(;
 ‘Form.scx’ or ‘FormClass’;
, CallBack;
, @m.parm1, @m.parm2, …
)

parameter 1: ‘Form.scx’ or ‘FormClass’:

This is self-explanatory: just pass a string indicating the name of the .scx file or
the class of the form you want to launch; of course, the .scx file should be in
the current PATH and the class library where form class is defined should be in
either Set(‘PROCEDURE’) or Set(‘CLASSLIBRARY’).

Parameter 2: CallBack:

This parameter can take several values:

– Passing an Empty() value such as ‘’ or .F. means the form is modeless
(non modal) and your code expects no response from it;

– Passing .T. means the child form should be shown as modal (user can
only interact with this form), but your code expects no response from it;

IMPLEMENTING FORM CALLS AND CALLBACKS

www.foxincloud.com ı contact@foxincloud.com

Abaque ı SARL au capital de 41 200 € ı RCS Paris B 379 373 566 ı 66, rue Michel Ange
75016 Paris +33 (0)9 53 41 90 90 ı www.zenbuyer.com ı info@zenbuyer.com

10

Calling a child form …
– Passing a NOT Empty() character string indicates the name of the

‘callback’ method into which user’s choice should be injected. This value
can be expressed in an either relative or absolute format:

– In current object: this is the most current and object-oriented syntax,
meaning the callback code lies in the same object that calls the form.
It’s also the easiest to implement as callback code can be moved within
the same object or class. Typical values are ‘wFormCallBack’ … to …
‘wFormCallBack5’, methods that every object inherit from its
<VFP9>\Tools\ab\aw.vcx parent class after Automated Adaptations
by FoxInCloud Adaptation Assistant step 2.

– Relative to current object: you can specify an address such as
‘this.Parent.[someObject.]someMethod’

– Absolute to the Form: if you prefer a centralized method to process
callbacks from several objects, you can pass
‘thisForm.[someObject.]someMethod’

Other parameters: @m.parm1, @m.parm2:

These are the parameters you want to pass to the form’s init() method as
you usually do in your code. In this example we pass parameters by reference
(@m.parm?) just to illustrate that FoxInCloud passes parameters by reference
all along the call chain so that arrays are supported.

On next page is a sample of sub-forms called from a top-level form.

IMPLEMENTING FORM CALLS AND CALLBACKS

www.foxincloud.com ı contact@foxincloud.com

Abaque ı SARL au capital de 41 200 € ı RCS Paris B 379 373 566 ı 66, rue Michel Ange
75016 Paris +33 (0)9 53 41 90 90 ı www.zenbuyer.com ı info@zenbuyer.com

11

Calling a child form …

Figure 2 - 2 levels of modal sub-forms cal led from a top-level form

IMPLEMENTING FORM CALLS AND CALLBACKS

www.foxincloud.com ı contact@foxincloud.com

Abaque ı SARL au capital de 41 200 € ı RCS Paris B 379 373 566 ı 66, rue Michel Ange
75016 Paris +33 (0)9 53 41 90 90 ı www.zenbuyer.com ı info@zenbuyer.com

12

CALLING A MESSAGEBOX
You probably noticed that the ‘automated adaptation’ (step #2 of FoxInCloud
Adaptation Assistant) has replaced calls to MessageBox() located within a
form by a call to thisForm.wMessageBox().

thisForm.wMessageBox()is a wrapper around thisForm.wForm() which
automatically passes the MessageBox form class as first parameter. The
MessageBox form class is indicated in a property that each form inherits from
<VFP9>\Tools\ab\aw.vcx!awFrm: ‘.wcMessageBoxClass’. By default
.wcMessageBoxClass holds the name of your sub-class of
<VFP9>\Tools\ab\aw.vcx!awFrmMB, typically
yourApp.vcx!yourAppFrmMB created by automated adaptation, where
‘yourApp’ is the 2-3 letter prefix you chose during automated adaptations
setup step #3. You can also choose another subclass of yours if you see fit.

thisform.wMessageBox()syntax is as follows:

thisForm.wMessageBox (;
, CallBack;
, eMessageText [, nDialogBoxType][, cTitleBarText][, nTimeout])
)

parameter CallBack obeys the same rules as described earlier for
thisForm.wForm().

Parameters eMessageText [, nDialogBoxType][,

cTitleBarText][, nTimeout] are the standard VFP messageBox()
parameters preserved by automated adaptations. Please see VFP help for
more details about these parameters.

On next page is a sample of message box called by a level-2 sub-form of a top-
level form.

IMPLEMENTING FORM CALLS AND CALLBACKS

www.foxincloud.com ı contact@foxincloud.com

Abaque ı SARL au capital de 41 200 € ı RCS Paris B 379 373 566 ı 66, rue Michel Ange
75016 Paris +33 (0)9 53 41 90 90 ı www.zenbuyer.com ı info@zenbuyer.com

13

Calling a messageBox …

Figure 3 - Top level form
call ing a modal form

call ing another modal form
call ing a standard messageBox()

IMPLEMENTING FORM CALLS AND CALLBACKS

www.foxincloud.com ı contact@foxincloud.com

Abaque ı SARL au capital de 41 200 € ı RCS Paris B 379 373 566 ı 66, rue Michel Ange
75016 Paris +33 (0)9 53 41 90 90 ı www.zenbuyer.com ı info@zenbuyer.com

14

IMPLEMENTING A CALLBACK
Let’s consider this typical event method in an object called ‘btn’:

* btn.Click()

<some code>

LOCAL luUserChoice

DO FORM question.scx WITH someParm TO luUserChoice

IF m.luUserChoice = <some Value>

 <some code processing someValue>

ELSE

 <some code processing other values>

ENDIF

In this example, question.scx is a modal form which RETURNs user’s choice
into the luUserChoice variable.

This code could/should be adapted as follows:

* btn.Click()

<some code>

thisForm.wForm(‘question.scx’, ‘wFormCallBack’, @m.someParm)

Response code is then moved to the wFormCallBack() method of the same
object ‘btn’:

* btn.wFormCallBack()

LPARAMETERS luUserChoice && FoxInCloud will pass user’s choice here

IF m.luUserChoice = someValue

 <some code processing someValue>

ELSE

 <some code processing other values>

ENDIF

Note that, in this example, the standard FoxInCloud parameter
‘tuUserChoice’ of method wFormCallBack() was renamed to
‘luUserChoice’ to easily fit existing code.

www.foxincloud.com ı contact@foxincloud.com

Abaque ı SARL au capital de 41 200 € ı RCS Paris B 379 373 566 ı 66, rue Michel Ange
75016 Paris +33 (0)9 53 41 90 90 ı www.zenbuyer.com ı info@zenbuyer.com

